Auxiliary Variable Methods for Markov Chain Monte Carlo with Applications
نویسنده
چکیده
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/astata.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.
منابع مشابه
Bayesian Auxiliary Variable Models for Binary and Multinomial Regression
In this paper we discuss auxiliary variable approaches to Bayesian binary and multinomial regression. These approaches are ideally suited to automated Markov chain Monte Carlo simulation. In the first part we describe a simple technique using joint updating that improves the performance of the conventional probit regression algorithm. In the second part we discuss auxiliary variable methods for...
متن کاملMarkov Chain Monte Carlo Methods for Statistical Inference
These notes provide an introduction to Markov chain Monte Carlo methods and their applications to both Bayesian and frequentist statistical inference. Such methods have revolutionized what can be achieved computationally, especially in the Bayesian paradigm. The account begins by discussing ordinary Monte Carlo methods: these have the same goals as the Markov chain versions but can only rarely ...
متن کاملRadial Basis Function Regression Using Trans-dimensional Sequential Monte Carlo
We consider the general problem of sampling from a sequence of distributions that is defined on a union of subspaces. We will illustrate the general approach on the problem of sequential radial basis function (RBF) regression where the number of kernels is variable and unknown. Our approach, which we term Trans-Dimensional Sequential Monte Carlo (TD-SMC), is based on a generalisation of importa...
متن کاملHamming Ball Auxiliary Sampling for Factorial Hidden Markov Models
We introduce a novel sampling algorithm for Markov chain Monte Carlo-based Bayesian inference for factorial hidden Markov models. This algorithm is based on an auxiliary variable construction that restricts the model space allowing iterative exploration in polynomial time. The sampling approach overcomes limitations with common conditional Gibbs samplers that use asymmetric updates and become e...
متن کاملSequential Monte Carlo Methods for Stochastic Volatility Models with Jumps
In this paper we propose a sequential Monte Carlo algorithm to estimate a stochastic volatility model with leverage effect, non constant conditional mean and jumps. Our idea relies on the auxiliary particle filter algorithm together with the Markov Chain Monte Carlo (MCMC) methodology. Our method allows to sequentially evaluate the parameters and the latent processes involved in the dynamic of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997